:,'me Operating System Programming-I: MicroC/OS-ll and VxWorks

Table 9.11 VxWorks Interprocess Communication Functions

Function . . Description
{ semBCreate () Creates a binary semaphore!
- s¢mMecreate () Creates a mutex semaphore!
: semCCreate Creates a counting semaphore'
-s¢mDelete () Deletes a semaphore
s¢mTake () Takes a semaphore
semGive () Releases a semaphore
s¢mFlush () Resumes all waiting blocked tasks
sgQCreate () Allocates and initializes a queue for the messages
sqQDelete () Eliminates the message queue by freeing the memory
gQSend () Sends into a queue .
sgQReceive () Receives a message into the queue?
pipeDevCreate () Creates a pipe device?
select () A task waits for several kinds of messages, from pipes, for sockets and serial 10s*

'We ppecify an option SEM_Q_PRIORITY for the order in which the semaphore should be taken if there are a number
of Waiting tasks for same semaphore. Specify SEM_Q_FIFO for defining to take the semaphore in FIFO mode. The
task] waiting since longest gets that first.

2The] calling task blocks if no message is available, else the message is read by the task. According to the option

eter, insertions into a queue can be an ordered one with priority as ordering parameter or for a FIFO based read.

s SEM_Q_FIFO. Let us assume that at an instant, several tasks are in the blocked state and are waiting
ng) for a binary semaphore for its posting. A waiting task can take the semaphore in one of the two
! (a) a task higher in priority than the other waiting ones takes the semaphore first and this becomes
ihle by SEM_Q_PRIORITY option, or (b) a task that was first blocked and reached the waiting state
e semaphore first among the waiting ones and this becomes possible by the SEM_Q_FIFO option.
itial state of the binary semaphore passes by argument initialState. It is SEM_EMPTY when using the
semaphore as an event-signalling flag. For the initialState, two options can be chosen: SEM_FULL in

M S. In MUCOS, SemKey and SemFlag differ only initial values defined for them, the rest of the operations
aréf ntical. The semaphore initialState option defines the initial state when it was created.
efurning parameter: The function semBCreate () returns a pointer, *SEM_ID. It returns NULL in case of
an errpr for the ECB allocated to the binary semaphore, if none is available.
Expmple 9.21 explains the use of semBCreate. Let us assume that ISR_Charlntr is service routine on an
inte%‘t‘ when a byte becomes available at a port A and a task reads that byte after waiting for the semaphore
avail ility from ISR_Charlntr.

Example 9.21

1. /* Include the VxWorks header file as well as semaphore functions from a library. */
include “vxWorks.h”

include “semLib.h” "
include “taskLib.h”
2. /* Task parameters declarations */ ¥

3. /* Declare a binary semaphore to be used as flag. */

SEM_ID semBCharIntrFlagID;

4. /* Create the binary semaphore and pass the options chosen selected to it. */ i
semBCharlntrFlagID = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY); /* Higher priority wamngtasks
can take it first. Its initial state is not available. */

5. /* ISR creation codes */
6. /* Codes for ISR_Charlntr, for example, for puttig the port byte into a buffer */

R

7 /* At the end, make the binary semaphore SEM_FULL from SEM_EMPTY using semGive ()*/
semGive (semBCharIntrFlagID); /* Section 9.34 explains SemGive */
/* Other remaining codes for the ISR. */

@
3
#
4

8. /* End of ISR_Charlntr Codes */

For using binary semephore, the following points are taken care.
(a) Declare initial value as SEM_EMPTY (not available)
(b) Use semTake () in a task, which makes SEM_FULL to signal an event to another task

WAIT_FOREVER means timeout = —1 and the period is thus infinity. semTake is like 0SSemPend
of MUCOS. (In MUCOS, time out = (0 means wait for ever.)

is

available SEM_FULL. Third option, wait for timeout mterval ,

Returning parameter: The function semTake () returns STATUS. It returns STATUS = OK in the sb of
success in taking the semlID, else returns ERROR in the case of an error. After the semTake ()
unblocks a task, it again becomes available (empty or not taken).

3.
R#éﬂlme Operating System Programming-I: MicroC/OS-il and VxWorks

3 Sendmg an IPC after a binary or mutex or counting semaphore release (posting). The function ‘STATUS
ive (semld)’ is for lettmg a task post (release) the binary or other type of semaphore After this, a

Unblocking can be as per option SEM_Q_FIFO or as per SEM_Q_PRIORITY.
sing parameter: semlD, for which there is a wait by this or another task.

ing the semaphore, semFlagID.
eter passing: The semFlaglD passes as SEM_ID pointer at ECB that associates with the semaphore.
ing parameter: The function semFlush () returns the STATUS and makes the semaphore state from

unblocks all the waiting tasks waiting for this semFlagID (semFlagID state = SEM_FULL earlier).
reating a mutex semaphore for the IPCs. Mutex semaphore is needed when there is a critical section,

ing task and a receiving task or using the flash memory for write operation or writing to a dislay
devicg). There may also be sharing of the hardware devices or files between two tasks.

(a) An exemplary use in which we are using binary semaphore for mutual exclusion is as follows:

(i) SEM_ID semMKeyID;

(ii)) semMKeyID = semMCreate (SEM_Q_PRIORITY, SEM_FULL).

(b) The function ‘SEM_ID semMCreate’ (options) is for creating an ECB pointed by the SEM_ID. The
uses of semTake and semGive functions are as explained earlier. Let us assume that when entering a
critical region in a task, semTake (semMReadPortAKey) executes and on leaving the critical region,
semGive (semMReadPortAKey) for using the mutex semaphore, sesmMReadPortAKey. Here, we
prevent the priority inversion situation (Section 7.8.5) by choosing an option. Another option is for
selecting either SEM_Q_FIFO or SEM_Q_PRIORITY. However, when selecting
SEM_INVERSION_SAFE we must select the option SEM_Q_PRIORITY. (Reason for using | sign in
place of & in case of passing multiple options by a single argument was given before in Section 9.3.2.)
(c) Another example of using three options in semMCreate function argument is as follows. Here, the
option prevents the priority inversion situation as well as protects the task from deletion by any other
task until the semaphore is made empty (not taken) at the end of the critical region of a task. Three
options are selected as follows.

SEM_ID semMReadPortAKey;

semMReadPortAKey = semMCreate (SEM_Q_ PRIORITY | SEM_INVERSION_SAFE

| SEM_DELETE_SAFE) ;
sing parameters: (i) The use of option between SEM_Q_PRIORITY and SEM_Q_FIFO is identical to
‘binary semaphore, which was described earlier. (ii) The use of SEM_INVERSION_SAFE makes the
critichl section using the mutex safe from priority inversion situation (Section 7.8.5). It means that the created
ore initial state is initialized as SEM_FULL (available). (iii) Recall the use SEM_DELETE_SAFE. It
ts deletion of this task when in the critical region.

Example 9.22 shows the codes using semMCreate (), semGive () and semTake ().

Example 9.22

1. /* Include the VxWorks header file as well as the task and semaphore functions from a library. */
include “vxWorks.h” :
include “semLib.h”

include “taskLib.h”

/* Declare a semaphore key to be used as mutex. */
2. SEM_ID semMReadPortAKey; 5
/* Create the mutex and pass the options chosen selected to it. */ s

#

3

semMReadPortAKey = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE); /* This mfllqes

the mutex semaphore full and available like SemKey set as 1 in MUCOS. */
semGive (semMReadPortAKey); .
3. /* Taskl creation codes */ .

4. /* Tnitial Codes for the Task 1 */

/* Task 1 Initial Codes ends */
5. /* Task while loop codes */

6. semTake (semMReadPortAKey, WAIT_FOREVER); /* Critical Section (shared resource or
section starts) */

7. semGive (semMReadPortAKey); /* Critical Section (shared resource or data section ends) */
8. /* Remaining task 1 codes */
9. /* Task2 creation codes */

10. /* Initial Codes for the Task 2*/

/* Task 2 Initial Codes end */

11. /* Task 2 while loop codes */

12. semTake (semMReadPortAKey, WAIT_FOREVER); /* Critical Section
(shared resource or data section starts) */

13. semGive (semMReadPortAKey); /* Critical Section (shared resource or data
section ends) */

14. /* Remaining task 2 codes */
/**/

data

b
Rdawme Operating System Programming-I: MicroC/OS-Il and VxWorks l467 l

Bog using mutex, the following points are taken care.

(8)| The critical section that v-c. muiex for the resources protection should not be unnecessarily long and
should be as short as possible.

(b)| Declare initial value as SEM_CMPTY (available) and use options for SEM_DELETE_SAFE if some
. | task uses taskDelete () function when using semBCreate.

(e)} Use option SEM_INVERSION_SAFE if some priority inversion situation is likely to arise and affect
" | the system functionine

(d)} Use semTake fu"..uon in the same task at the beginning and semGive at the end of a critical region in
which there are shared resources. semTake can be used recursively but the total number of times a
semTake executes should be the same as the number of times semGive executes.

(¢)| Do not use semGive () for the mutex posting outside the critical region.

(B Do not use semFlush () (its use is illegal when using the mutex semaphore).

6. Qreating a counting semaphore for the IPCs. VxWorks counting semaphore (Section 7.7.5) is similar to
the PQSIX semaphore (Section 7.8.3). It increments on posting (giving) and decrements on taking (on wait-
over) the semaphore. Posting this semaphore up to 256 times is permitted before it is taken. The status becomes
equal fo the initial value of counting semaphore only when the number of times semaphore-given equals to
the number of times it is taken. The counting semaphore helps in bounded buffer problem, ring-buffer problem
and ¢opsumer—producer problem (Section 7.8.3). We have seen this in Example 9.18. If initial count = 0, then
a task aiting for the semaphore blocks.

Tﬁ function SEM_ID semCCreate (options, unsigned byte initialCount) is for creating an ' ECB pointed
by the SEM_ID. One of the two options must be passed on calling a function. An exemplary use is as follows:
‘semClharlntrFlagID = semCCreate (SEM_Q_PRIORITY, SEM_EMPTY);’.

(a) BEM_ID semCID;

(b) BEM_ID = semCCreate (SEM_Q_PRIORITY, 0); /* To initial count = 0. */

Pasging parameters: (i) One option that can be selected is SEM_Q_PRIORITY and the other is
SEM_{QQ_FIFO. For the initial state, two options can be chosen: either initialCount should pass as 0 or it
should| be a fixed value. It depends on whether the semaphore is to be used for decrementing count for the
tasks that are already blocked or (b) for incrementing counting.
ing parameter: The function semCCreate () returns a pointer, *SEM_ID. It returns NULL in case of
for the ECB allocated to the counting semaphore. Null if none is available.

Exqmple 9.23

1. e as Steps 1 and 2 of Examples 9.21 and 9.22. */

2. /¥ Peclare and Create Semaphores function, its identifying variables. */
/* De

)eplare SemFlaglID as the argument that passes to the task whenever called. Declare SemMKeyID and
f¢CountID as the mutex and counting semaphores. */

SEMLID SemFlaglID, SemMKeyID, SemCCountID;

reate Semaphore flag and declare unblocking of the tasks priority wise. Declare initially semaphore
g ynavailability. */

; f\ g1ID = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);

Create Semaphore mutex and declare unblocking of the tasks priority wise. Initially semaphore
1s available by default. */

: Embedded Si

two options can also be used. However that prolongs the execution time. We are not using safe
taskDelete () function is not used. Initially semaphore (mutex) is available by default. */
5. /* Create Semaphore for counting and declare unblocking of the tasks priority-wise.
unsigned byte initialCount = 0;
SemCCountID = semCCreate (SEM_Q_FIFO, initialCount); o
unsigned short COUNT_LIMIT = 80; /* Declare limiting Count = 80 */ i
6. /* Declare and Create Semaphores task function, its variables and parameters. */ £
void Task_ReadPortA (SEM_ID SemFlaglID);
int readTaskID = ERROR,; /* Let initial ID till spawned be none */
int Task_ReadPortAPriority = 105; /* Let priority be 105 */ ’
int Task_ReadPortAOptions = 0; /* Let there be no option. It waits for the SemFlag1ID from l?t
(Example 3.21). */
int Task_ReadPortAStackSize = 4096; /* Let stack size be 4 kB memory */ .
4. /* Create and initiate a task for reading at Port A. Task name starts with “t’. The task calling-fung
Task_ReadPortA */ ‘ ;
readTaskID = taskSpawn (“tTask_ReadPortA”, Task_ReadPortAPriority, Task_ReadPortAOptios
Task_ReadPortAStackSize, void (* Task_ReadPortA) (SEM_ID SemFlaglID), SemM;
SemCCountID, &initialCount, COUNT_LIMIT, 0, 0, 0, 0, 0, 0); /* Pass SemFlaglID as the arg
task function and pass other arguments SemMKeyID and SemCCountID as arg0 and argl. Ren
arguments are 0s. */

5

/* Other Codes */

5. /* The codes for the Task_ReadPortA redefined to use the key, flag and counter*/ s
static void Task_ReadPortA (SEM_ID SemFlaglID) {
6. /* Initial assignments of the variables and pre-infinite loop statements that execute only once *ﬁ
; /* Declare the buffer-size for the characters countLimit = 80 */
thount =0

7. while (1) { /* Start an infinite while-loop. We can also use FOREVER in place of while (1). */ : i

8. / *Wait for SemFlaglID state change to SEM_FULL by semGive function of character avaﬁéility
check task */ it
semTake (SemFlaglID, WAIT_FOREVER); - i
9. /* Take the key so that another task, port decipher does not unblock. That task needs SemMKi
unblock and run */

semTake (SemMKeyID, WAIT_FOREVER); /* SemMKeyID is now not avallable and the, crmcé
starts */

10. if (Count > = COUNT_LIMIT) {

*

}/* End of Codes for the action on reaching the limit of putting the characters into the b“*ﬂ

#ime Operating System Programming-i: MicroC/OS-H and VxWorks

‘Codes for reading from P~rt A and storing a character at a queue or buffer*/

mGive (SemCCountID); Count ++; /*Let counting semaphore value increase because one character
en put into the ¥lier holding the character stream. initialCount incremented because of the need to

compare later wit: the COUNT_LIMIT#*/
13, s¢inGive (SemMKeyID); /* Critical region ends. Release the mutex SemMKeyID to let next cycle of
th]# Ipop start */

incke ' ents after each function semeve (SemCCountID)’ call.

/**ﬁ **#**********#/

ores. The function ‘semPxLiblnit () initializes’ the VxWorks library to permit use of these. The functions
_open (), sem_close () and sem_unlink () to initialize, close and remove a named semaphore, respectively.
g functions sem_post () and sem_wait () unlock and lock a semaphore. The actions of these two are
similarjto semGive and semTake in the VxWorks counting semaphore or OSSemPost and OSSemPend functions

8. Qreating a message queue for the message IPCs. The function ‘MSG_Q_ID msgQCreate (int
sg, int maxMsgLength, int qOptions)’ is used for creating an ECB pointed by the MSG_Q_ID

point to be noted is that the message pointer passed into an array of message pointers in MUCOS
(Example 9.20).

In af message queue, the maximum number of messages = 2*! — 1 and the maximum number of bytes in
each message is 23! — 1 bytes.

Passing parameters: (i) To the function, maxNumMsg passes the maximum number of messages that can
be sent to the queue. (ii) maxMsgLength passes the maximum number of bytes permitted to be sent as a
message. (iii) One optibn that can be selected is MSG_PRI_NORMAL, when the message is sent into the
queue for receiving as a FIFO. The first message sent is then read first. The other option is MSG_PRI_URGENT.
When the message is sent into the queue with this option, the message is received as LIFO. Urgent messages

Embedded sﬂtqus

like error logins are sent with this option selected. The last message sent is then read first. (iv) Anotherjoption
that can be selected is MSG_Q_PRIORITY. The other is MSG_Q_FIFO. Let us assume that at an #nstant,
several tasks are in the blocked state and are waiting (pending) for a message from the same queue|for its
posting (sending). A waiting task can take from the queue in one of two ways. (a) A task higher in griority
than the other waiting ones, takes the message from the queue first. This becomes possible by
MSG_Q_PRIORITY option. (b) A task, which first blocked and reached the waiting state, takes the ssage
from queue first among the waiting ones. This is possible by MSG_Q_FIFO option.
Returning parameter: The function msgQCreate () returns a pointer *MSG_Q_ID. It returns LL in
case of an error for the ECB allocated to the message queue. Null if none is available or on error. i
Consider the rasks in a hand-held device. The tasks post the messages into a queue using msgQsend (). A
buffer for writing into the flash memory in a task receives the bytes using MsgQReceive ().
9. Sending an IPC after a message is sent into the queue. The function ‘STATUS msgQSend (msgQld,
&buffer, numBytes, timeOut, msgPriority)’ is used for letting a task send into the queue. |
Passing parameters: (i) The queue identifies by msgQId. (ii) Message posts to an addressed buffar. The
number of bytes sent into the buffer = numBytes. (iii) The timeOut is the period till posting of the meskage is
awaited in case the queue is full. (iv) msgPriority is specified as MSG_PRI_NORMAL or MSG_PRI_URGENT,
depending upon whether the message is inserted later on to retrieve in the FIFO or LIFO mode, respegtively.
Returning parameter: The function msgQSend () returns STATUS. It returns STATUS = OK in ¢ase of
success in taking the msgQId, else returns ‘ERROR’ in case of an error that msgQId is invalid.
Example 9.24 shows how to use the queue functions for create and send.

1

- i
Example 9.24 %
1. /* Include the header files in Example 9.22 Step 1 as well as queue functions from a library. “'1
2. # include “msgQLib.h” E
3. /* Declare message queue identity and message data type or structure. */ t
4. MSG_Q_ID portAlnputlD;, '
5. unsigned byte portAdata; i
6. void * message; /* Pointer for the message buffer */ i
7.

/* Create the message queue identity and pass the parameters and options chosen selected to it bh% let
the maximum number of messages be 80 and message be of 1 byte each.

Let us assume that Task_ReadPortA reads a byte from port A and sends it to another task that rec eﬁves
the messages from a queue after waiting for the queue message availability. */

8. PortAlnputlD = msgQCreate (80,1, MSG_Q_FIFO | MSG_PRI_NORMAL) “) " g
9. /* Task Creation Codes as in Example 9.23. */
10. . ‘

11.

12. /* Start Codes for Task_ReadPortA. */
13. void Task_ReadPortA {

14. . '
15. while () { ' -4
16. semTake (SemFlaglID, WAIT_FOREVER);
17. /* Take the key to not let port-decipher task unblock and run. Therefore, that task also’ Jeeds

S el e e o

SemMKeyID for running. */
18. semTake (SemMKeyID, WAIT_FOREVER); /* SemMKeyID is now not availabli
the critical region starts */

and

19}
20
21

22

RHﬁme Operating System Programming-1: MicroC/OS-Il and VxWorks 47

-

I* At the end, the send the byte, which is read at Port A. It is sent as a message to queue,
portAInputID.
*message = portAData;

l 1§‘58QSend (portAlnputID, &message, 1, NO_WAIT, MSG_PRI_NORMAL);

/* Other remaining codes for the task. */

}
}/* End of Task_ReadPortA Codes */

10.| Waiting in a queue for availability of message. The function ‘int msgQReceive (msgQld, &buffer,
maxBytes, timeOut)’ is used for letting a task wait till sending (posting) of a message. Wait till either msgQSend

15
16

ipn sends the message in a task or till a time out occurs, whichever happens first.

xBytes = 80; : »

hile (1) { /* Start an infinite while-loop. */

/¥ Wait for a Queue Message sending or availability. */

msgQReceive (msgQId, message, maxBytes, WAIT_FOREVER); /* WAIT_FOREVER means
timeout = -1 and the period is thus infinity. */ ’

. /¥ Other remaining Codes */

f ;b’“/* End of while loop*/
"* End of the Task_MessagePortA function */

% **/

1**

472 Embedded Syatems

11. Using POSIX queues. Important points in using the POSIX queues are as followings.
(a) The function mgPxLiblnit () initializes the VxWorks library to permit use of the POSIX Queues.
(b) The functions mq_open (), mq_close () and mq_unlink () initialize, close and remove a named jqueue.
(c) The function mq_setattr () sets the attribute of a POSIX queue. i
(d) The functions mq_send () and mq_receive () unlock and lock a queue.
(e) The function mq_notify () signals to a single waiting task that the message is now available. The

notice is exclusive for a single task, which has been registered for a notification (registered means
later on takes note of the mq_notify). This provision is extremely useful for a server task. Alsérver
task receives the notification from a client task through a signal-handler function (like an|ISR).
(f) The function mq_getattr () retrieves the attribute of a POSIX queue.
(g) The POSIX queue function mq_unlink () does not destroy the queue immediately but p:

queue. Destroy means to de-allocate the memory associated with queue ECB.
VxWorks queues have the additional following features. (i) Time out option can be used. (ii) Two

for example, fd is assigned to identify the device created. The number is assigned after examining a s
numbers already allocated. When using the device-related functions, the number facilitates the device i
The device function examples are open or read or write or get attribute or set or attribute close (Section

A pipe in VxWorks is a FIFO queue, which is managed not by queue IPC functions but by the devi
functions. VxWorks has management functions for a pipe-driver (like a device driver) pipedrv. This is
to the named pipe driver in Unix. Pipes also implement the unidirectional link between a set of tasks.

Function pipeDevCreate (‘/pipe/pipeName’, maxMsgs, maxMsgBytes) creates a pipe device
pipeName for maximum maxMsgs messages. Each message can be of maximum size maxMsgBytes. I
~ into a list of devices on creation. devs () function retrieves the list of devices with the device number
to each device including pipe devices.

Consider an example for creating a pipe named as pipeUserinfo. Assume that it can have a maxi
four messages: user name, password, telephone number and e-mail ID. Each of these can be of a m
size of 32 bytes only. A global variable fd is an integer number for a file descriptor that identifies a
among a number of devices at the IO system. The device can be a file or pipe or socket or other device.
Example 9.26 explains the codes for creating, writing and reading. i

Example 9.26

1. # include “fioLib.h” /* Include the IO library functions. */ i
pipeDrv (); /* Install a pipe driver. */ J
2. /* Declare file descriptor. */
int fd, 1

3. /* Mode refers to the permission in an NFS (Network File Server). Mode is reset as 0 for unrestgicted
permission. */ ’
int mode;”)

4. /* Create pipe named as pipeUserinfo for 4 messages, each 32 bytes maximum. */

#me Operating System Programming-I: MicroC/OS-1l and VxWorks : 473

plm evCreate (“/pipe/pipeUserInfo”, 4, 32); mode = 0x0;
Me&i hges can be written into a pipe by the function by first opening a pipe, device and then writing into
that. The function for opening is open (‘/pipe/pipeUserInfo’, rdwrFlag, mode). We define flag = O_RDWR,

permlts both read and write. Flag O_RDONLY penmts the read only optlon and flag O_WRONLY

i‘ﬂevice or other type of device. */
" rite a message, info of IBytes. *l

& =12;
{fd info, IBytes);
nessage can be read from an open plpe by the function mt read (fd, &buffer, lBytes)

i ,vad read (fd, info, IBytes);

inding the set of opened devices at an instance from the number of devices in the system. Recapitulate
ctions in Section 8.4. Assume that all bits are cleared at the time of creation of an event flag group.

e bit. A task can wait for setting any or all events in the group.
ilarly, there is FD_SET. FD_SET sets a file descriptor function. Each device in a system having a
dr of devices set a bit in the fdSet. (A file descriptor is used for a pipe or socket or serial device or other

if rese} at fdSet. .
W, let us examine how a task selects and finds the number of active devices at an instance. Task finds
er a pipe, pipeUserinfo is active or a pipeResponse is active. The function to select is ‘int select

d following: numBitWidth = number of bits to examine in the array of bits at two pointers, pointerReadFds
interWritedFds. Examination is as per the value at a structure that stores NULL if wait forever or a
or time out. Timeout is the number of system clock interrupts up to which the wait is done. The
ion select () blocks till at least one device in the array of devices is ready or till time out, whichever
happehs first. Select clears all the bits that correspond to the devices that are not ready and returns the number
of active devices. It returns ERROR on an error.

474

[]
©

o Exceptions are the software interrupts. A signal setting is equivalent to a flag setting in case of hardware intg

@ Summary

The following is summary of what we learnt in this chapter. !

The basic functions in the RTOSes and types of RTOSes. 3
It is a necessity to use a well-tested and debugged RTOS in a sophisticated multitasking embeddedw
MUCOS and VxWorks are the two important RTOSs. 4
Code elegancy is one of the best in MUCOS and the provision of powerful functionalities is one of thc be§t in
VxWorks.

MUCOS task creating and deleting, suspending and resuming functions are used for the task contro :
scheduling functions. ¢
There are functions for initiating the system timer in MUCOS. Starting a multitasking system by a first #gs
later suspending it forever is shown as a technique in programming for a multitasking system. !
MUCOS handles and schedules the tasks and ISRs and handles pre-emptive scheduling.

task run. =
MUCOS has the IPC functions for the event flag group, semaphore, mailbox and queue. The simplicity f erguf

e of
MUCOS is that the same semaphore functions are used for binary semaphore, for event-signalling fijg| for
resource key and counting. i
MUCOS has mailbox functions and a simple feature that a mailbox has one message pointer per mmlbox 'Ihere
can be any number of messages or bytes, provided the same pointer accesses them, H
MUCOS has queue functions. A queue receives from a sender task an array of message pointers. Message pdinjers’
insertion can be such that later on it can retrieve in the FIFO method as well as in the LIFO method from * jeue.
It depends on whether the post was used or post-front function was used, respectively. This helps in taking] nqmce
of a high-priority message at the queue. ,
VxWorks is a popular broadly focused RTOS because of its powerful development tools, support to adyanced
processor architectures and device software optimization. !
VxWorks supports the multlple file systems, systems that enable advanced multimedia functlonafl y'and
multitasking environment using VxWorks scheduler, POSIX scheduler or in-house developed scheduler'] 1
VxWorks supports ability to run two concurrent OSes on a single processing layer (e.g., VxV.>rks and Wihdows
or VxWorks and embedded Linux). t
Instead of one create function, VxWorks has three functions: task create, task activate and sk spawn (credte; and

activate).
VxWorks also provides for system timer functions, system auxiliary clock functions, watch dog timer
delay and delay resume functions.

the ISRs over the tasks and provides nested ISRs, and thus a common stack of the ISRs.
VxWorks has an IPC called signal. It is used for exception handling or handling interrupts from the tasks. V;
has signal-servicing routines. A signal-servicing routine is a C function. It executes on occurrence of an infes
or exception. A connect function connects the function with the interrupt vectors.

e VxWorks provides for pre-emptive scheduling as well as round robin time-sliced scheduling of tasks : kigned

equal pn'ority

task priority and another is as a FIFO when accepting (taking) an IPC. 11
VxWorks has three different semaphore functions for use as IPC for the event-signalling flag, resource key{and
counting semaphore. VxWorks also supports POSIX semaphores. VxWorks, instead of queuing the &
pointers only, provides for queuing of the messages. Queues can be used as LIFO as in MUCOS. VxWorks
supports use of pipes and POSIX queues. VxWorks pipes are the FIFO queue that can be opened and clos
a file device. Pipes are like virtual IO devices that store the messages as FIFO.

Re%l- me Operating System Programming-I: MicroC/OS-It and VxWorks 475

o

X queues
9. semaphores
Rasdurce key

Sig
S«* isticated multitasking
e d system

Tdsk deletion
resumption

suspension

Keywords and their Definitions

It is a semaphore that increments when an IPC is given by a task or a section of
the task. It decrements when a waiting task unblocks and starts running.

A flag, which sets on occurrence of an event and resets on response to the event. A
binary semaphore or event flag group bit can be used as the event-signalling flag.
Executing a function on receiving a signal. Error is also handled by usmg an
exception-handling function.

The file descriptors of all devices exist into a data structure FD set. The bits
corresponding to active devices are set and inactive devices are cleared.

A pipe or socket or file (Section 8.6.2) when creates, a file descriptor a data
structure is created and a number, for example, fd is assigned to identify the
device created.

Memory block(s) in which the file read, file write, file open and file close functions
operate as in case of file on a disk.

An IPC in the event control block into which a task or ISR posts a message‘
pointer, which is retrieved by another task waiting for that.

An IPC in the event control block into which a task posts the messages ‘at the tall
pointer or urgent messages at the front pointer, which are retrieved by another
task waiting for that.

A device from which one task gets the messages and the other task puts the
messages. VxWorks pipe is a FIFO queue in which the IO device functions operate.
Putting and getting messages from a pipe is like the one from a file.

IPC queue functions as per POSIX standard functions.

Semaphore functions as per the IEEE POSIX standard functions.

A semaphore that resets on the start of execution of a critical region code and sets
on finishing these.

Flag-like intimation to RTOS for development of certain situations during a run
that need urgent attention by executing an ISR function-like signal handler.

A systemn that has multitasking needs with multiple features and in which the
tasks have deadlines that must be adhered to.

A system clock that can be set to interrupt at preset intervals. The time is updated
regularly and the system interrupts regularly. RTOS also gets control of CPU to
examine if any pre-emption or rescheduling is needed. Task priority provides
priority for system timer functions, delay functions and delay resume functions.
Let a task wait for a minimum time defined by the number of system ticks passed
as an argument to the delay function.

Task creation and activation.

An RTOS pC/OS-II from Micrium of Jean J. Labrosse.

An RTOS from Wind River® Systems.

Task is allotted a TCB and an identity. Creation also initiates and schedules on
creation in MUCOS.

Task no longer has the TCB and is ignored till created again.

Task, which was delayed or suspended, can now be scheduled when the turn comes.
A task unable to run its codes further.

476

TCB : Task control block, which has the task parameters so that on task switc

Well-tested and debugged RTOS : An RTOS, which is thoroughly tested and debugged in a number of smiim

[«

10.
11.
12.

13.

14.

15.
16.

17.

18.
19.
20.

21.
22.
23.
24.

K’/‘ Practice Exercises

: Exercises 35 to 12 pertain to MicroC/OS-II and 14 to 23 to VxWorks.
. Search the web (e.g., www.eet.com) and find the latest top RTOS products.
. Draw five figures showing models for five examples 9.16 to 9.20 in Section 9.2 for event-flag semaphore, mutex,

parameters remain saved and when RTOS re-switches it back, the task

from the point at which it left. Task is thus an independent process. i

€

A

1

Review Questions

. What are the advantages of a well-tested and debugged broad-focussed RTOS, which is also well trus ed and

popular? (Hint: Embedded software has to be of the highest quality and there should be faster software develgpment.

Need for complex coding skills required in the development team for device drivers, memory and device agers,
networking tasks, exception handling, test vectors, APIs and so on.) :
How does a mailbox message differ from a queue message? Can you use message queue as a counting semgphore?

Explain ECB.

counting semaphore, mailbox and queue interprocess communication.

orchestra playing robot examples in Sections 1.10.4, 1.10.2 and 1.10.7, respectively.

. Classify and list the source files, which depend on the processor and those that are are processor-indepenqlem?
. Design a table that gives MUCOS features. :
. MUCOS has one type of semaphore for using as resource key, as flag, as counting semaphore and mutex. What is

the advantage of this simplicity?
How do you set the system clock using function void OSTimeSet (unsigned int counts)?
When do you use OS_ENTER_CRITICAL () and OS_EXIT_CRITICAL ()?

. Draw the figures to show the models for interprocess communication at processes in digital camera, ACYM and

How do you set the priorities and parameters, OS_LOWEST_PRIO and OS_MAX_TASKS, for pre-¢gmptive

scheduling of the tasks?
A starting task is first created, which creates all the tasks needed, initiates the system clock and then th
suspended. Why must this strategy be used?

task is

VxWorks kernel includes both POSIX standard interfaces and VxWorks special interfaces. What are the advantages

of special interfaces for the semaphores and queues?

How do you initiate round robin time-slice scheduling? Give 5 examples of the need for round robin schaduling.
How do you initiate pre-emptive scheduling and assign priorities to the tasks for scheduling? Give 10 exarpples of

the need for pre-emptive scheduling.

How do you use signals and use function void sigHandler (int sigNum), signal (sigNum, sigISR) and intConnect

{I_NUM_TO_IVEC (sigNum), sigISR, sigArg]? Give five examples of their uses.
How do you create a counting semaphore?
OS provides that all ISRs share a single stack. What are the limitations it imposes?

i

How do you create, remove, open, close, read, write and IO control a device using RTOS functions? Take an

example of a pipe delivering an IO stream from a network device.

Explain the use of file descriptor for IO devices and files.

How do you let a lower priority task execute in a pre-emptive scheduler? Give four coding examples.
How do you spawn tasks? Why should you not delete a task unless memory constraint exists?

Write exemplary codes for using the POSIX functions for timer, semaphores and queues.

We have discussed the following important points
relating to the RTOSes in the previous chapters.

é e An RTOS has basic functions (services) of process
(thread or task) and memory management, enables
sharing of resources and data, enables use of timers
; and system clock, does time allocation and de-alloc-
'‘¢- ation to attain best utilization of the CPU time under
the given timing constraints for the tasks, manages
interprocess communication (IPC) (communication
between the ISRs, tasks and OS functions) and IO
subsystems, manages devices and device drivers and
provides for real-time task-scheduling and interrupt-
F latency control. RTOS enables hard and soft real-time
’ r‘ operations. RTOS provides a predictable timing
’ behaviour of the system (in most cases in case) and a
predictable task synchronization using the priorities
, allocation RTOS provisions for priorities inheritance.
N § e A programmer uses RTOS functions in application
n software and APIs. RTOS also enables asynchronous
I0s. RTOS functions synchronize the concurrent

L

é

L~ N_0H S

i

. #

running of processes (tasks or threads), fast-level ISRs, slow-
level interrupt service threads (ISTs).

3. MUCOS and VxWorks are the two important RTOSes. MUCOS
and VxWorks functions provxde programming for the ISRs and
tasks (processes). !

scheduler. VxWorks supports ability to run two concurrent OSes
on a single processing layer. '

We will discuss the following popular RTOSes in this chapter.
1. Windows CE for consumer electronic systems and devices
2. OSEK—a reliable RTOS for the automotive electronic system
3. Open source real time Linux
4. RTLinux

~10:1" WINDOWS CE

Windows CE (WCE) is an RTOS for handheld computers and mobile systems,
developed by Microsoft. Microsoft designer perception for using the word CE is that
CE stands for the properties that it is compact, connectable, compatible, co

systems, however applications do not limit to consumer electronics systems.
WCE is nowadays one of the most popular OSes for the handheld syste

embeds into the system, the different run-time environment is used. Therefo
code can run on different platforms and be distributed. At run time, the .
time verifies the executing native environment, data source and destination types,
within range array indices and other functionalities. The code becomes robust.]

Rephiijlme Operating System Programming-1I: Windows CE, OSEK and Real-Time Linux ... 479

Wigdows CE.NET is used as a real-time operating system for handheld computers and mobile systems.
WCE.NET is described in detail in Douglas Boling Programming Microsoft WINDOWS CE.NET”, Microsoft,
USA, 2003. Section 10.1.1 describes in brief the basic features and functions in WCE. Figure 10.1 shows the

basic

tures.

10.1j1 Windows CE Features
WCE platform provides the following features.

L.

bl 0

Provides a Windows platform for the systems, which have resource constraints of power, memory,
touch screen or display screen size and processing speeds. Windows platform enables a user to feel,
look and interact with the system using GUIs in a manner similar to a PC running on Windows.

It is an open, scalable and small-footprint 32-bit OS.

Enables running of PocketPC applications such as Outlook, Explorer, Pocket Power-Point, Pocket-
Word and Pocket-Excel for mailing, Internet, PPT and slide shows and office applications. PocketPC
is a handheld PC based on WCE. Latest version CE 6.0 is for home as well as office systems and gives
cellular networks connectivity. WCE using systems enable running of multimedia, voice user interfaces
(VUlIs), smartphone and game applications. (Voice user interfaces facilitate interaction and command
inputs using stored voice or tunes, and voice-command inputs from user.)

[Windows CE open, scalable and small-footprint 32-bit OS |

[1 |2 3 |4 5

LROELTP]

bset of Win32 | |Muititasking An 80x86 or Touch screen and Serial, OBEX,
and and multi-threaded SuperH or small device Bluetooth, DA,
| C++, OS functions with ARM or other screen displays TCP/iP, IPv6 and
ial Basic and low interrupt Processor in and inputs from Ethernet and other
pact .NET latencies and hard the device keypad or stylus popular protocols,
ne-work for real time system and Windows like Cellular network

applications menus connectivity

[PocketPC Outiook, Word, Excel, PowerPoint and Explorer applications }——6—

I Multimedia, smartphone, VUIs and Game APIls Il 7

Fig. 10.1 Windows CE basic features

. |Processor of a WCE using system may be an 80x86 or SuperH or ARM or SH4 or MIPS. WCE
system-performance fine tunes to the processor.

. |Functions as multitasking and multithreaded OS. Multitasking means that there are a number of processes
which can run concurrently. Each process can have multiple threads and has at least one thread. A thread
is a basic unit of computation using the resources which are provided by WCE. WCE provides support

« |to 256 levels of thread-priorities. WCE also provides for adjustable time quantum for the threads. Threads

having equal priorities are assigned a time slice (Section 8.10.2) each during the system run.

'WCE has low interrupt latencies due to use of ISTs in addition to ISRs. The ISTs are put in priority
queue of threads waiting for execution. (Sections 4.2.3 and 8.7.3). An IST is the slow-level interrupt
service thread of a fast-level ISR. This gives WCE functionalities for hard real-time scheduling and
interrupt latency control. WCE supports nested ISRs.

480 Embedded Sibtems

10.

11.

12.

Table 10.1 gives the new enhanced features of WCE in Windows CE 6.0, Windows Mobile 6 and
Automotive 5.0.

10.1.2 Windows CE Programming

Enables use of a subset of Win32 APIs, Visual C++, Visual Basic and a NET Compact Framework (in
Windows CE.NET). Software can be created using Microsoft Visual Studio 2005. The code is de eloped
in Visual C++. Software for mobile devices (systems) with smartphone and cellular connectiyity are
developed using Windows Mobile SDK. :

The programs can be tested on the familiar PC having 80x86 processor before embedding into the
system. Emulation edition can be used to emulate an application on a PC. Evaluation kit is usedl to test
the program before embedding into the actual system hardware with it or another processor. |
Supports tovch screen. A touch screen displays as well as accepts input through a stylus. (Stylus is a
writing pencil-core-shaped object for a user of device or system as an alternative to mouse and keyyboard.
The user touches the tip at the displayed menu or displayed keypad on the screen to enter the corhmands
or text, respectively.)

Network and communication protocols support, for example, OBEX (object exchange), Bl
IrDA, UDP, TCP/IP, IPv6 and ethernet and many other popular protocols.

Shared source and source code access are provided by Microsoft. There is componentization. There are
two software layers. One sublayer consists of Microsoft developed source codes of WCE kerngl and is
shared with the system or device manufacturer. Then the manufacturer adds the remaining paft of the
kernel according to the system hardware. The remaining part is the hardware abstraction layer. Further,
Microsoft gives freedom to modify kernel-level objects also without sharing them with the Mi¢rosoft.
Supports power manager, virtual memory, file-based registry and several file systems (e.g., flash
memory-based file system). (Power manager is software to reduce the power dissipation by reducing
clock speed or running Wait or Stop instruction or optimizing use of caches or stopping s¢reen or
reduced intensity displays after limited wait for user input. Virtual memory are the addresses ajlocated
for stored programs which may be of size more than the physical memory size. Section 8.6.2 etplained
the file system concept.) :

etooth,

indows

Following are the differences in programming with WCE and Windows. WCE provisions for the following.

1.

Sl A A ol ol

. Device drivers imported as the DLLs (Section 10.1.7).
10.
11.

Win32 APIs subset only (e.g., no environment-related functions and environment blocks, nq current
directory information at the subset).

Small screen system.

Touch screen system.

No hard-disk, low RAM memory and use of ROM and flash memory in the system.
System processor can be x86 or ARM or SuperH, or any other.

Unicode 16-bit characters (unsigned short) so that international characters and languages can be used.
Reduced number of Windows controls in WCE compared with the personal computer.
New format Windows Controls (classes which support a number of GUI functions of cgmmand,
menu, tool bars provided in one line due to small screen) and the new Controls [e.g., for date pnd time
picker, calendar picker, edit to auto capitalize first character of a word when keying-in, virtual keyboard
and organizer (e.g., task-to-do)].

Not support for the Handle inheritance and certain security attributes.
Componentization (Section 10.1.1).

R
F* kTime Operating System Programming-Il: Windows CE, OSEK and Real-Time Linux ...

Table 10.1 Windows CE 6.0, Windows Mobile 6 and Windows Automotive 5.0 Enhanced
Features

SiNp. Feature Description

1 Windows CE 6.0 Number of processes 2'® (earlier 32), lower virtual memory (VM) 2 GB (earlier 32 MB)
‘ addresses per process, upper 2 GB of the kernel VM space, device drivers running in both
user mode and kernel mode (Section 8.1.2), system components which now run in kernel
have been converted from EXEs to DLLs (Section 10.1.7), which get loaded into kernel
space later at run time, new security infrastructure, 802.11i and 802.11e Wirelesss LAN
support, new cell core for cellular networks and easy data connections, UDF 2.5 and exFAT
file system, IDE integrated with Visual Studio 5.0 and targeted to enterprise specific tools
such as industrial controllers and consumer electronics devices.

2 Windows Mobile, Offfice Mobile 2007, smartphone with touch screen, improved Bluetooth stack, VoIP

6 second edition with AEC (acoustic echo cancellation), support to encryption of data stored in external
removable storage cards, uses smart filter for fast files, e-mail, contacts and songs search,
and can be set as modem for laptop.

3 Windows Based on Windows CE 5.0 and building blocks for automobile off board service,

Automotive 5.0 automotive user interface toolkit (AUITK), expanded virtual memory support to enable
the creation of complex 3-D graphics, and advanced navigation displays, enhanced power
management and faster cold-boot times, real-time traffic updates, directions to the cheapest
gas and improved performance.

A Windows-based application program is written to respond or activate or changes from the current state
on: pushing of notification(s) from the OS. A notification occurs on an event. The notification sends the
mesdage (Sections 8.1.2 and 8.4) to the Windows application program. Messages are placed in queue
(Section 7.12) for the Windows of the application program. The OS monitors all input sources [e.g., stylus
tap, Virtual (on-touch screen) or physical key press]. The OS notifies that a key has been pressed or a button
has been clicked or command has been received for redrawing the Windows screen. [In Unix; it is the other
way fround. The application program asks for the input(s) from the OS for a character or commands or inputs
fronj the keyboard.]

indow class instance defines a Window (object). The Window has basic coordinates x and y, and z-
parapneter. The z specifies whether Window is over and below other windows. The Window has specification
for Wisibility (show or hide or no activate). The Window has specification for parent—child hierarchy. Windows
procedures share the attributes, for example, Commandshow. Windows procedures are there to respond to
requsts and all notifications sent to the Windows.
WCE does not support Handle inheritance. [Windows uses Handle in many procedures (functions). The
Hanflle provides reference to an interface, for example, for a Window, file or thread or port. An example is
INSFANCE of a Window. It is an object, which is used as a Handle. An interface is an unimplemented
procedure (function or method), the codes for which are defined in the class, which uses that interface. Handle
is alko used as a pointer, called option pointer. The option pointer is pointer which points to a pointer of one
of tHe several sets of the codes, which run on selecting the option. Windows support (WCE does not) Handle
inhekitance, which means a Handle can be extended to create a new Handle, which inherits the variables,
proglerties and procedures of parent handle and adds, overrides and overloads new variables, properties and
progedures.]

482

10.1.3 Windows and Windows Management

There are many Windows on a screen. A screen top (desktop) is a Window. A command-tool-task bar is a
Window. A button is a Window. The Windows are related to each other. There may be a hierarchical (parent
child) relationship in the Windows. There may be a sibling relationship or owner-owned relationship.
There is a top-level main Window. The main Window does not have a parent. The main Window can have
child Windows. When a parent is moved or deleted, the all child Windows shall also move or delete. |Child
Window is invisible except at the edges. CreateWindowEx or CreateWindow creates a Window and uses the
same messages and procedures as the main. A 32-bit style parameter dwStyle when set as WS_Child thd child
Window is created. An 8-bit style parameter bMenu parameter is used in child Window and equals the(ID of
that Window. (Prefix dw means double word and b means byte as data-types.)
Examples of management functions for the Windows are FindWindow (to find a Window and get Handle
for that), GetParent to find the parent and GetWindow to query and get the owner, children and siblings.

10.1.4 Memory Management

Windows CE 6.0 permits virtual memory (VM) limit of 2 GB (earlier 32 MB) for each process and pper
2 GB VM space as the kernel VM space. Extended VM support enables the creation of complex 3-D
on WCE devices and therefore animation and gaming applications.
WCE provides for system memory between 1 MB and 64 MB and OS needs minimum 512 kB of mémory
and 4 kB RAM. WCE also provides for managing the low memory conditions.
WCE considers the RAM in two sections: program memory (called system heap) and object stord. The
memory is allocated to the program from a pool of unused memory area called the heap. The appli¢ation
program that runs uses the heap and stacks. An application is allocated memory blocks (in place of the ges)
from the heap and is in reserved virtual memory space region. A block in heap can also be freed later whén not
required. A heap can be a local heap of 188 kB or a separate heap in case of requirement of bigger number of
memory blocks.
Object store (256 MB) is virtual RAM disk for permanent store, which is protected from turning off power.
Individual file can use up to 32 MB in case of RAM as object store. PIM (personal information manager) data
is also stored at the store. PIM includes data of the contacts, calendar and task-to-do. A contact includes aame,
address, e-mail ID, phone numbers of home, office and mobile. A handheld PocketPC has a backup bgttery,
which provides power to object store data and files. WCE at power-on searches the previously loaded gbject
store at RAM and uses that object if available. The object store stores files, registry and WCE databases
(Sections 10.1.5 and 10.1.6). ,
WCE saves in the ROM execute-in-place files. Execute-in-place file is a file in ROM for executiop that
cannot be opened and read by standard file functions open and read (Section 8.6.2).
WCE supports virtual and page memory. Virtual memory may be at the flash or disk. The applidation

is a fixed-sized memory unit, which is loaded from disk or flash to the RAM. WCE uses page size of 1
4 kB. It depends on the system processor. Three types of virtual pages are supported in WCE. Co
page is a page reserved for application and directly maps to the RAM address. A reserved page at
address cannot be used in the application. A free page can be used and is allocated during the run.

Static Allocations WCE allocates two allocations, one for read only and other for read/write data, ’

WCE
and 6
stack

10.1

Time Operating System Programmihg—?l: Windows CE, OSEK and Real-Time Linux ... i

Stack stores the temporary variables and processor registers for the application and OS functions.
rovides for separate stack 1ur each thread (Section 7.2). WCE provides for 58 kB maximum stack size
of stack for guarding the stack for underflow or overflow. An application can also specify the thread
ze.

5 Files and Registry

Files afe created by a CreateFile function. It has the following arguments:

&

uw—;gam-huw»—

L

W(|
(1)
)
3)
4

&)
(6)

M
®)

. | long poi.ter for character string,

. | 32-bit desired access parameter,

. | 32-bit shared mode specification,

. |long pointer for security attributes,

. | 32-bit to specify creation and distribution,
. | 32-bit specify flags and attributes and

Handle for template file.
arguments are assigned as follows:

. |character string used for file name,
. |WCE file access parameter GENERIC_READ or GENERIC_WRITE or both,
. {WCE create file can set 32-bit shared mode specification as 0 or FILE SHARE_READ,

FILE_SHARE_WRITE,

. |WCE create file must use long pointer for security attributes as NULL,
. |WCE file creation and distribution specified by 32-bits CREATE_NEW, OPEN_EXISTING,

CREATE_ALWAYS (new file after truncating existing), OPEN_ALWAYS (create new file if not
existing else open) or TRUNCATE_EXISTING,

. {32-bit specify WCE flags and attributes FILE_FLAG_WRITE_THROUGH, FILE_FLAG_

RANDOM_ACCESS, FILE_ATTRIBUTE_NORMAL, FILE_ATTRIBUTE_READONLY, FILE_
ATTRIBUTE_ARCHIVE, FILE_ATTRIBUTE_SYSTEM, FILE_ATTRIBUTE_HIDDEN,
FILE_ATTRIBUTE_NORMAL and

. {Handle for template file is NULL as WCE does not support file template.

E files differ and have similarities in following respects for other Windows OS.

Uses most of the Win32 file APIs.

Uses standard file IO procedures CreateFile, OpenFile, ReadFile, WriteFile, SetEndOfFile and CloseFile
(Section 8.6.2). These functions create, open, read, write, truncate and close the files (not for execute-
in-place files in ROM).

WCE files use the same attribute flags as in Windows. Examples are flags for read only, compressed,
archive and system hidden.

'WCE used up to 256 storage devices or partitions on the storage devices. A installable file system
driver can be installed for flash and other file systems.

{Uses object store as a default RAM-based file system,

Current directory concept missing. A file name and complete path specification (maximum 260 bytes
of MAX_PATH length) is required in WCE. There is no mention like C or D drive when using the
files. A file has three-character extension format after the dot sign. The extension defines the file type.
IFor example, .txt for text file.

Memory-mapped files and objects are supported for reading the files as byte streams.

[Uses compact flash and RAM with backup battery.

484

Embedded S}%ﬂems

WCE registry uses standard registry APIL Registry API is an API for system database. It uses standard file
registry functions. The functions are as follows: RegCreateKeyEx, RegOpenKeyEx, RegSetValueEx,
RegQuery ValueEx, RegDeleteKeyEx, RegDeleteValueEx and RegCloseKey. -

Registry system has keys and their values as in a hash table. Keys can contain the keys. There are multiple-
level keys. Permitted data types for registry are 32-bit numbers, string or free (for binary data).

10.1.6 Windows CE Databases

Table 10.2 gives the procedures (functions) and properties of WCE databases.

Table 10.2 Windows CE Functions in WCE Databases

S.No. Feature Description
1 Database format Series of un-lockable records with saving of the property(ies) and data
together in a record. No record contains another record within it. h
record has four-level indices for sorting.
2 Maximum number of 216 _ 1 and 2'7
records and record size
3 Database record Double 64-bit signed, boolean, collection of bytes, O-temined unicodg string,
properties data types 16-bit signed, 16-bit unsigned, 32-bit signed, 32-bit unsigned, time fnd
date structure ;
4 CeMountDB Vol Windows To mount an external flash or media on a database volume, which suorés the
CE function database files (not object-store files)
5 CeCreateDatabaseEx To create new database
Windows CE function
6 CeOpenDatabaseEx To open created database
Windows CE function
7 CeSeekDatabaseEx To set pointer to database record
Windows CE function
8 CeSetDatabaseInfoEx To set the sort order of opened database
Windows CE function
9 CeReadrecordPropsEx To read a record of given property
Windows CE function
10 "CeWriteRecordProps function To write new property of record
n CeDeleteDatabaseEx function To delete records, properties and complete database
12 CloseHandle () To close the Handle
13 CeUnmountDB Vol To un-mount an external flash or media form a database volume, which was
Windows CE function mounted earlier
14 Windows CE notification Notify to a process that a thread has modified the database.

10.1.7 Processes, Threads and IPCs

WCE has Win32 executable files, called modules in two forms, one .exe files and the other the DLLs (dynamic-
linked libraries). The .exe files are compiled files and are first loaded in system memory for execu jon. The
DLLs are loaded at run time on request from the .exe file or another DLL. The loading is by usinJ

DLLs and the functions list within the DLLs at an import table in the .exe file. The DLL also has import table
for other DLLs and their functions.

a list of

F& ;ﬁme Operating System Programming-Il: Windows CE, OSEK and Real-Time Linux ...

485

CE is a multitasking multithreaded (Sections 7.1, 7.2 and 7.3) OS. In a multitasking OS, an application

consists of the number of processes. The process is an instance of an application. There can also be multiple

of the same processes. In a multitasking multithreaded OS, a process can create number of threads

which execute concurrently. There is at least one thread which is created per process. There is context switching
betwgen the threads of the -_...ae processes or from one process thread to another process thread. Basic unit of
execution under contrul of kernel is thread. Each thread has separate context (for CPU register including PC

and
Al
(for (

tack pointer) and stack for saving context when thread blocks and for retrieving on thread activation.

least four WCE processes load on start up. These are FileSys.exe (for file system functions), GWES.exe
5UI functions), Device.exe (for loading and maintaing device drivers) and NK.exe (for kernel functions).
Table 10.3 gives the procedures and properties of processes and threads.

Table 10.3 Properties and Windows CE Functions for Threads and Processes

S.N|

D.

Feature

Description

1

Thread properties

Thread priorities

Maximum number of
processes and memory size

CreateProcess WCE function

TerminateProcess Windows
CE function

OpenProcess Windows
CE function

CreateThread WCE function

ExitThread Windows
CE function

Threads of the same process share the memory space and manage access
permissions. The Handles are used for synchronization objects
(interprocess communication objects), file and memory objects. A primary
thread can create secondary threads.

Each thread assigned priorities one among eight levels!: system-level
threads and device drivers (ISTs) use upper 248 levels of priorities. Total
number of priority levels is 256 and priority O value is highest and 255 is
lowest. Higher priority thread pre-empts lower priority thread. Priority
inversion (Section 7.8.5) is taken care of during execution.

Windows CE 6.0 supports number of processes 2'6 (earlier 32) with each
process virtual memory limit of 2 GB (earlier 32 MB) and up to lower

2 GB (earlier 32 MB). Also there is upper 2GB (earlier 32 MB), which is
the kernel VM space.

To create a new process with four parameters required in the arguments
(long pointers for the ApplicationName, Commandline (a unicode string),
and ProcessInformaton? and 32-bit CreationFlags® (to specify initial state
on loading).

To terminate a process. Two arguments are Handle for process and 32-bit
exit code for the process. The exit code for the process is obtained from
GetExitCodeProcess function.

To open a process using processld as argument. Processld is obtained from
GetWIndowThreadProcessid .

To create new process with following parameters required in the arguments:
32-bit StackSize, long pointer for THREAD_START_ROUTINE (an
address of routine for starting thread execution), long pointer Parameter for
application-specified thread parameter(s), 32-bit CreationFlags* (to specify
initial state on loading) and 32-bit Threadld (thread ID).

To terminate a thread using one argument, which is 32-bit exit code for the
thread. The exit code for the thread is obtained from GetExitCodeThread
function.

(Contd)

486 Embedded Sy*tns

S.No. Feature Description
9 SetThread-Priority To set thread priority among eight levels. Handle for thread and prio.
) value to be set are the arguments. Value = 250 for thread set to no:
priority level.
10 CeSetThread-Priority To set thread priority value among 256 values between 0 and 255. Handle
‘ for thread and priority value are the arguments. \
11 GetThread-Priority To get thread priority level. Handle for thread is the argument.
12 CeGetThread-Priority To get thread priority value among 256 levels between 0 and 255. Handle
for thread is the argument. mIn
13 CeSetThread-Quantum To set thread time slice value. Handle for thread and 32-bit time slice
milliseconds are the arguments.
14 CeGetThread-Quantum To get thread time slice value. Handle for thread is the argument.
15 Sleep To delay the thread execution for a period. 32-bit time slice in millise¢onds
is the argument. ’
16 SuspendThread To suspend a thread. Handle for thread is the argument.
17 ResumeThread To resume a suspended thread. Handle for thread is the argument.
! Eight levels are idle (= normal - 4), above idle (= normal — 3), lowest (= normal — 2), below normal (= normal — 1), qormal,
above normal (= normal +1), highest (= normal + 2) and time critical (= normal +3).

2 ProcessInformaton consists of a Handle object for process, a Handle object for thread, 32-bit processld and 32-bit
3 CreationFlags = 0 for standard process, = CREATE_SUSPEND for create and suspend, = CREATE_NEWCONSOLE for
creating a new console, = DEBUG_PROCESS for process passing debug information to calling process |and =
DEBUG_ONLY_THIS_PROCESS for process passing debug information only from this process and not from CHILD
PROCESSES.
4 CreationFlags = O for standard thread, = CREATE_SUSPEND for create and suspend (Must use ResumeThread if ¢reated
thread is suspended) and = STACK_SIZE_PARAM_IS_A_RESERVATION for crwating thread with reserved stack size.

Exceptions, Notifications and IPC Objects Synchronization ~WCE provides for exception hagdling
signals and notification signals (Section 7.10). Notification examples are notifications from timer, serial device
detect, power up, system event. Notification can generate a dialog and a sound or run a notification respohding
function.

WCE also provides Handles for the IPC objects. An IPC object in a multitasking or multithreading system
is used to generate a synchronization object and the object gives the information about certain sets of
computations finishing one process or thread and to let the other process or thread waiting for that ob%ct to
get information about finishing the computations that take note of the information. An IPC object is rekeased
(sent) which means that a process (thread or scheduler, task or ISR) generates some information by or|value
or generates an output so that it lets another process waiting for that object in order to take note or uge the
object. A kernel provisions for the functions for creating, releasing and waiting the IPC objects (Section 7.9).

IPC objects in a multitasking or multithreading system are events (Section 8.4), semaphores inclpding
mutex semaphores (Section 7.11) and message queues (Section 7.12). WCE provides for the events, semaphores
including mutex semaphores and message queues for threads synchronization. Table 10.4 gives these for
exceptions, notifications, events, semaphores, mutex and message queues.

10.1.8 Inputs from Keys, Touch Screen or Mouse

A keyboard is used to enter many characters, commands or large text. Physical keyboard is inconvenient in a
handheld device. There is a soft keyboard. It controls and simulates the virtual keyboard on touch screen.: An

&
§

Rea

§

ﬁme Operating System Programming-l: Windows CE, OSEK and Real-Time Linux ...

487

application can get the input either from pysical keyboard or from soft keyboard. A function SetFocus is used
to spegify the focused Window so that the input directs to that Window. Windows sends a series of messages
for the Window in focus. Every key or action has an assigned value. For example, a virtual key value is
VK_LIBUTTON which passes a value 01 on a stylus tap. A virtual key value is VK_RETURN, which passes
a value 0D when the Enter key is pressed.

Table 10.4 Windows CE Functions for Exceptions, Notifications, Events, Semaphores,
Mutex and Message-Queues '

S.No|,; Feature Description
I | Signalling (exception) RaiseException using the 32-bit exception code, exception flags, number of
. functions arguments and 32-bit constant for array of long pointer for the arguments.
! Each argument passes the data to the exceptional responding routine (like
, ISR).
2. 1% Signalling (notification) 1. CeSetUserNotificationEx using the Handle for notification,

* functions

2
! Critical section functions

|

: Semaphore. functions (for
. threads of a process)

" Message queue functions

Event functions (for threads
of a process)

Wait Single object functions

3
}
i

CE_NOTIFICATION_TRIGGER object! and
CE_USER_NOTIFICATION object (object pointer defines action flags,
dialog title, dialog text, sound and other details).
2. CeGetUserNotificationEx using the Handle for notification and long
pointer for CE_USER_NOTIFICATION object.
3. CeClearUserNotificationEx using the Handle for notification to
acknowledge a notification by notification responding function.
InitializeCriticalSection (to initialize a critical section),
EnterCriticalSection (to enter a critical section), LeaveCriticalSection (to
exit a critical section), TryEnterCriticalSection (to try to enter a critical
section) and DeleteCriticalSection (to delete a critical section).

CreateSeamphore (to create the semaphore), ReleaseSemaphore (release
semaphore to let waiting thread code unblock), CreateMutex (to create the
mutex), ReleaseMutex (release mutex to let waiting thread code unblock).

CreateMsgQueue (to create the message queue), OpenMsgQueue (to open
a message queue), ReadMsgQueue (to read from the queue),
GetMsgQueuelnfo (to query the queue), WriteMsgQueue (to write into the
queue), CloseMsgQueue (to close an open message queue).

CreateE+:_.. (to create the event), SetEvent (event set to signal occurrence
of the event and do not auto-reset till waiting thread unblocks) (event auto-
resets on unblocking of thread), ResetEvent (to force reset of the event and
unblock the thread waiting for it), PulseEvent (to set the event and then
reset the event by unblocking all waiting threads for that event),
SetEventData using event-handle and 32-bit data in the arguments,
GetEventData using event-handle to get the event data.

WaitForSingleObject using object Handle and 32-bit waiting time value in
milliseconds in the arguments.

(Contd)

488 ‘ Embedded Sys*ms

S.No. Feature Description

8 Wait for multiple objects WaitForMultipleObjects using count number for objects (events or »
- mutexes), pointer to array of object Handles, boolean WaitAll (if trug then

wait for all, in WCE must be set to false) and 32-bit waiting time valug in

milliseconds in the arguments. Each object handle is a long pointer. Waiting

time value = INFINITE disables the timeout specification For wait for the

multiple objects.

9 Wait for message objects MsgWaitForMultipleObjectsEx using count number for message objects, long
pointer to array of object Handles, boolean WaitAll (if true then wait fprall,
in WCE must be set to false), 32-bit waiting time value in milliseconds fin'the
arguments and 32-bit flags for WakeMask.?

| CE_NOTIFICATION_TRIGGER object pointer defines type and notification details of notification type, notificatign size,
notification event, notification application, notification arguments, notification start time and notification end time.

2WakeMaskFlags = QS_ALLINPUT for any message received, QS_TIMER for a WM_TIMER (Windows Manager] timer)
message, QS_PAINT for a WM_PAINT Windows manager paint, QS_SENDMESSSAGE (a sent message outside he list
received), QS_POSTMESSSAGE (a posted message outside the list received), QS_MOUSE a mouse move or click of stylus
tap received, QS_MOUSEMOVE a mouse move or stylus move received, QS_MOUSEBUTTON a mouse click or stylus tap
received.

A keyboard function example is SHORT GetKeyState (int iVirtKey) for querying a keyboard key. An
application can simulate key-event.

Inputs from Touch Screen or Mice Touch screen for input is equivalent to a single button mice|input.
Further, the mice has a cursor. When a mice is pressed, the window is sent the message WM_LBUTTONDOWN
on left button down and release of WM_LBUTTONUP on left button up event.
WM_MOUSEMOVE message is sent when the stylus is moved within the same window. When the|stylus
is dragged outside the in-focus window, the WM_MOUSEMOVE messages stop. If SetCapture proceglure is
called then, WM_MOUSEMOVE messages continue. ReleaseCapture stops sending the messages of
WM_MOUSEMOVE.
GetMouseMovePoints sends the messages for each point traced by stylus on the screen from a start {o end.
GetMouseMovePoints integrated with handwriting recognizer application can be used handwriting pn the
PocketPC to write the text or commands or messages.
WM_LBUTTONDBLCLK message is sent on the double tap of the stylus. For each message the parameters
|Parameter = two 16-bit screen tap horizontal and vertical position values x and y, and wParameter = 16 bits
for the flags corresponding to which key shift or control held down or not.
Right button click of mice is simulated using stylus when ALT key is held down while tapping.

Windows Controls Each Window uses a number of classes, called Controls. A control has a number of
user-interface elements. The user-interface examples are button, radio and checkbox. The user-inferface
elements are predefined for a Control and there exists a Windows Control library. Predefinition and |ibrary
help in each application window has same feel and look.

A Control is also a Window and is created by CreateWindowEx or CreateWindow. A control may be static
control. It displays a text (as per defined alignment) or icon or bitmap. A control is scroll bar control.

Most powerful Control for user interface is Button. Button appearance can be set. An owner window can
also draw the owned button.

Re&l%me Operating System Programming-1l: Windows CE, OSEK and Real-Time Linux ... 489

1.{Simple button is a push-button. When the stylus taps the button, it generates a WM_COMMAND
message with a 16-bit parameter wParameter for the flag BN_CLICKED. BN_CLICKED flag specifies
that button is clicked.

2. | Checkbox button is a square box with blank or filled circle or a label using which the user specifies a
choice by tap stylus at that point and which toggles between the blank and the filled. The Checkbox
toggles between two states.

3.{Radio button is a button to allow the user to select among the interrelated choices and when one
selects the other may unselect. Application checks or unchecks a radio button.

4.| Group box button. It is an empty box with a text label. The text in the box gives the interface for
programming.

A Control is list box control. It is used for selecting among the list of items displayed by text. WCE supports
a constant string data style in list box control. The style is called LBS_EX_CONSTSTRINGDATA. Only the
pointef to the string saves at the Window and not the string. The application is supposed to manage that string.

A Control is Edit control. It is used for keying in the text and editing it. The keyed text is in upper cases
when ES_UPPERCASE style is set. When ES_LOWERCASE is the style, the edit text appears as lower
cases. [The keyed text is visible as *** when ES_PASSWORD style is set.

A Control is combo-box control. One can use two or more controls in the combo box. A combo box in
WCE is drop-down or drop-down list. Drop-down is an edit-text field control with a button on the right side.
When this button is clicked a list box for selection appears. Drop-down list is a list of texts each with a button
on thejright side. The stylus taps at any one of it to choose.

Windows Menus WCE menus are at the menu bar or command bar control. The CreateMenu, AppendMenu,
enu are the procedures in WCE to create, append or insert a menu item. CreatePipupMenu is a procedure to
menus. Window generates WM_COMMAND message and the ID parameter of the menu item is sent.

Table 10.6 gives the WNet API subset network connection functions.

10.1[10 Device-to-Device Socket and Communication Functions

Devices, such as mobile phone or PocketPC establish synchronization with the neighbouring devices and
compyters, and form a personal area network (PAN). Examples of protocols used in PAN are Bluetooth and
IrDA {Infrared Data Association).

AnjAPI is Winsock API for sockets programming support to Windows. The TCP/IP, Bluetooth and
IrDA network sockets are programmed using Winsock. Winsock supports streaming sockets and datagram
(Sectign 3.11.3) connections. (Streaming sockets and datagram difference is that there is connection between
two APISs at different devices, and between two specific addresses at two APIs at different devices, respectively.)
Winsofk has a feature of accessing PAN resources through the sockets that does not depend on platform and
implementation of socket functions (Section 7.15). WCE supports a subset of Winsock 1.1 and 2.0 API. Table 10.7
gives the Winsock API subset in WCE for device-to-device socket communication functions.

490 Embedded S#mms

Table 10.5 Windows CE Serial Communication Functions

S.No. Feature Description

1 CreateFile WCE function Creates the port for communication. Returns a Handle for serial COM1
port. The arguments used are TEXT (“COM1”"), GENERIC_READ
GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, and NULL.

2 ReadFile Reads from the port for communication. Returns an integer. The arggments
used are Handle returned on creation, pointer to character, pointer toj 8-bit
number of bytes read, NULL.

3 WriteFile Reads from the port for communication. Returns an integer. The argpments
used are Handle returned on creation, pointer to character, pointer toj8-bit
number of bytes read, NULL.

4 TransmitCommChar Send character into queue for port transmission. (Control characters ran be

inserted into the stream). Returns a boolean for successful or unsuccessful
transmission. The arguments used are Handle returned on creation apd
character for transmission.

5 Set CommMask To set communication mask. The arguments used are Handle re on
creation and 32-bit for event mask to specify clear to send, break, set
ready, error, receive line signal detect, character received, a receive-¢vent’s
flag received, transmit buffer empty.

6 Get CommMask To get communication mask. The arguments used are Handle returndd on
creation and long pointer for 32-bit event mask.

7 WaitCommEvent To wait for event. Handle for file, long pointer for 32-bit event mask{ and
NULL (for long pointer for overlap) are the arguments.

8 SetCommState Y To set communication state. Handle for file and long pointer to devige
control block (DCB) structure are the arguments. DCB defines 32 bifs for
DCB length, baud rate, binary flag, parity flag and 24 other flags.

Table 10.6 WNet API Network Connection Functions

S.No. Feature Description ‘

1 WNetAdd-Connection Maps the network (remote) resource. Returns a 32-bit code for no [Or
‘ error. The arguments used are one Window handle, three long pointefs for
network resource and string for password and user names and one 32-hit
value for the flags. The network resource is a structure, which containg long
pointers for remote name and local name. ‘

2 WNetConnection-Dialog To dialog. The argument used is a long pointer for connection dialog .
structure. 4
3 WnNetCancel-Connection Disconnects the network (remote) connection added earlier. Returns

32-bit code for no error or error. The arguments used are one long pdinter
for name (local or remote), 32-bit value for the flags, boolean to spe¢ify
forced disconnection when files or devices are open and not closed.

(Contd)

Re¥l'

e Operating System Programming-il: Windows CE, OSEK and Real-Time Linux ...

S.No.

Feature

Description

WNetDis-connectDialog

WNetGet-Connection

WNetGetUser
WNetGetUniversalName

SetCommState

To dialog on disconnection. The arguments used are a Window
handle and 32 bits for resource type. Resource type may be printer
or disk or any other that is available. There is another overloading
WNetDisconnectDialog, which has one argument, a long pointer
for disconnection dialog structure.

Queries the network (remote) resource connection. Returns a
32-bit code for no error or error. The arguments used are long
pointers for strings for name (local or remote) and user name and
long pointer for 32-bit value, which specifies the length of remote
buffer characters.

Queries the user name. The arguments used are long pointers for
strings for local and remote names and long pointer for 32-bit
value, which specifies the length of remote buffer.

Queries the name as per universal naming convention. The
arguments used are long pointer for string for local path, 32-bit
info-level, long pointers for buffer address and 32-bit buffer size.

To set communication state. Handle for file and long pointer to
device control block (DCB) structure are the arguments. DCB
defines 32 bits for DCB length, baud rate, binary flag, parity flag
and 24 other flags.

Table 10.7 Winsock AP| Subset in WCE for Device-to-Device Socket Communication

S.No.

Functions

Feature

Description

Socket function

Bind function

Accept funciion

To create new Socket. is like a Handle. The function has three parameters
required as the arguments: three integers, one for addressed family
specification (e.g., AF_BT, AF_IRDA or AF_INET for Bluetooth or IrDA
or TCP/IP, respectively), second for addressed socket type specification
(e.g., SOCK_STREAM or SOCK_DGRAM for stream or datagram socket,
respectively) and third for protocol (e.g., BTHPROTO_RFCOMM for
Bluetooth RF communication).

To find the desired server. Three arguments are SOCKET (of server),
constant structure for addressed socket information (e.g.,
SOCKADDR_BTH, SOCKADDR_IRDA or SOCKADDR_INET for
Bluetooth or IrDA or TCP/IP, respectively) and integer for name length.

To accept client connection at the server in listen mode. Three arguments
are SOCKET (of server) already in listen mode, structure for addressed
buffer information (for SOCKADDR_BTH, SOCKADDR_IRDA or
SOCKADDR_IN for Bluetooth or IrDA or TCP/IP, respectively) and
integer for buffer length.

(Contd)

|
E
' - Lt Embedded S#tems

S.No. ' Feature Description

4 Connect function To connect a newly created client socket to server (client does not call bind
and accept function). Three arguments are connecting (client) SOC
constant structure for addressed socket information (e.g.,

5 Listen function - To connect to server for data after binding. Two arguments are SOCKET
and integer for queue size (= SOMAXCONN for maximum size) fo
pending connection.

6 Send function To send from a socket. Four arguments are SOCKET (of sender), ¢
' char for addressed buffer information (for SOCKADDR_BTH,
SOCKADDR_IRDA or SOCKADDR_INET for Bluetooth or IrDA pr
TCP/IP, respectively) and two integers one for length and other for flags.

7 Recv function To receive from a SOCKET. Four arguments are SOCKET (of receiyer),

: - constant char for addressed buffer information (for SOCKADDR_BTH,
SOCKADDR_IRDA or SOCKADDR_INET for Bluetooth or IrDA jor

TCP/IP, respectively) and two integers one for length and other for flags.

8 Shutdown To shut the send and receive functions on a close of the socket conngction.
Two arguments are SOCKET and integer for closing how (= SD_BQTH or
SD_SEND or SD_RECEIVE for shutdown of both send or receive qr send
function only or receive function only, respectively)

9 Close socket To close the socket connection. The argument is SOCKET to be closed.

10.1.11 Win32 API Programming

The development of Windows for the GUIS is often the most important part of application developmient in a
computer or embedded system or handheld system which has a screen or touch screen for interaction with a
user. GUIs facilitate interaction and inputs from user after graphic screen displays of menus, buttons, dialog
boxes, text fields, labels, check box and radio buttons and others. Win32 API programming is thug a very
important part of any application development. Win32 has large number of APIs in a PC. However, only a
subset is required for handheld devices and small screen size systems. A subset of Win32 APIs is
in WCE.

When an application is developed, a Windows displays the messages in the central region, title, co
tool and status bars. The Windows also displays commands (buttons) so that a stylus tap (or mou

minimizing and closing at right-hand side top corner. Windows also show icon for Help (to help the
a ? sign icon (to show more buttons on a tap there). WCE has single-line controls for command,
status bars. A stylus tap or mouse click sends the menu choice to the application. WCE has new format for the
Windows Controls (command, menu, toolbar bars) and new Controls (data, time, calendar) and ofganizer
(e.g., task-to-do).

The following example shows a simple application of Win32 APIL The example shows how simple itis to
create the screen windows and show the commands (buttons) for further action in an application.

Time Operating System Programming-il: Windows CE, OSEK and Real-Time Linux ...

He

l, andline, int iCommandshow) {MessageBox (NULL TEXT (“Welcome”), TEXT (“Wechsg”)
~DEFBUTTON1, MB_DEFBUTTON2, MB_ICONQUESTION);

m0; } /* After third argument the last argument(s) is one or more among the series of ﬂags which can

e as provided for in the procedure MessageBox. */

. The Presentinstance is a parameter to identify the present 1nstance Previnstance is a parameter to
identify the previuosinstance (WCE always assumes it to be zero).

 Commandline is a unicode string (it specifies the functions of the program).

. Commandshow is an integer to specify state of the program, which defines a configuration of main
window. The state parameter is passed from the parent application to a new application. The state

_ configuration in a personal computer can be the one which shows minimized, maximized or normal icons.

~ WCE allows only three states and configuration of WCE Windows is as per variables show without
activate (SW_SHOWNOACTIVATE), show hidden (SW_HIDE) and show normal (SW_SHOW).

i |- Default value of Commandshow is used as per the value for the main Window show command.

t 4. MessageBox creates a window over the main window. The window shows messages in the box until
window is closed. It shows: (i) no other Windows because first argument is NULL; (ii) text message

" Welcome in the unicode message window (at center) and text Unicode message caption (title) WelcMsg

I 1+ atleft corner in the command-cum-tool-status bar; (iii) buttons as per definitions MB_DEFBUTTONI,

MB_DEFBUTTON?2 in the middle of command bar and icon of ? ; (iv) at the end of bar, a sign X

icon is created at the right corner in the bar. The X enables the closing of the window by the user

on tapping on the touch screen or mouse click. [MessageBox is used here in place of printf

otherwise a driver console.dll needs to be added to enable printing on console (screen).]

is example uses Handle. INSTANCE is a Handle object. In the present case, a handle is a reference to an

is example uses prefixes before the objects and variables as follows. Prefix H before object INSTANCE
tes that it is a Handle object. Prefix LP before WSTR indicates that it is a long pointer. Prefix W before

previous example or a similar function in the Win32 subset of WCE. There are several Windows procedures

that ¢an create its own Windows. Following are the examples.

. CreateWindowEx, which creates main window.

. MainWndProc, which creates application window.

. For example, WM_Paint to draw the window background and put text within it at the specified position
after first creating a client rectangle.

Drawing on Screen 'WCE does not support full Win32 graphics API and different mapping modes in
Windows. WCE does not support coordinate transformations. A text is written using DrawText procedure.
WCE always sets device context in MM_TEXT mapping mode.

screen using the device context. A device context is a tool, which Windows use to manage the access.to the
display and printer. Two attributes of device context are colours for background and foreground. Text ali nt

also be created for an application as alternative to WCE default fonts.

A bitmap is a graphical object. Bitmaps can be drawn. The bitmaps are used to create, retrieve impges,
manipulate and draw at the device context. WCE supports format of bitmap in four colours. WCE permyits 1,
2, 4, 8, 16 and 24 values and provides for compaction.

pen tool. WCE provides for fill functions for the draw, for example, gradient fill (shade changing on mgving
vertically up to down or horizontally from left to right) and hatched filling.

~10.2 OSEK

RTOSes described in Sections 9.1 to 9.3 do not suffice for automotive systems, which require other necessary
features. Embedded software in the automotive system needs special features in its OS over and above the
MUCOS or VxWorks features and MS DOS and UNIX. Special OS features needed are as follows.
1. Language can be application-specific, need not be just C or C++ and data types should algo be
application-specific and not RTOS-specific. In VxWorks, for example, STATUS is RTOS specific.
This is not permitted, as it could be the source of a bug and thus unreliable.
0S, every method, class and run-time library should be scalable. This optimizes the memory ndeds.
Tasks can be classified into four types. This provides a clear-cut distinction to a programmer: Which
class to use for what modules in the system.
(a) Basic with one task of each priority and single activation. It is called BCC 1 (Basic Conformance
Class 1).
(b) Extended with one task of each priority and single activation. It is called ECC 1 (Extgnded
Conformance Class 1). Extended task means, for example, a task created by FirstTagk in
Example 9.8.
(c) Basic with multiple tasks of each priority and multiple times activation during run. It is dalled
BCC 2.
(d) Extended with multiple tasks of each priority and multiple times activation during run. It is dalled
ECC 2.

OS can schedule ISRs and tasks in distinct ways. (VxWorks scheduler also does os.) (
. Interrupt system disables at the beginning of the service routine and enables on return. This le{s the
task run in real-time environment.
6. Task can be scheduled in real-time.
7. Task can consist of three types of objects, events (semaphore), resources (statements and functions)

and devices. There are port devices also. An exemplary device is alarm. It displays the pictogfams,
messages and flashing messages. It sounds buzzer and beeps.
8. Timer, task or semaphore objects creation and deletion cannot be allowed. A run-time bug may l¢ad to
uncalled deletion of a timer or semaphore. That is the potential source of a problem and thus unreljable.
9. IPC, message queue posting by a task, is not allowed as a waiting task may wait indefinitely for its
entire message needs. RTOS queue types, waiting infinitely or for a time out for a message car be a
potential source of trouble and thus unreliable. Similar risks may arise with semaphore as a respurce
key or counter. These are therefore not used.

we

v o

ime Operating System Programming-lI: Windows CE, OSEK and Real-Time Linux ... 495

Before entering a critical section and on executing a service routine, all interrupts must disable and
enable on return only (Refer to Section 7.8).

es and protocols. Software in the automotive electronics must also be standard.

A [structured and modular software implementation based on standardized interfaces and protocols as
propgsed by OSEKVDX is a necessity. This gives the portability and extendibility, and thus the reusability of
existing software. Presently, the important software standards and guidance are AMI-C (Automotive Multimedia
Imerﬁce Collaboration) [http://www.ami-c.org], MISRA-C (Motor Industry Reliability Association standard
for Cilanguage software guidelines for automotive systems) [www.misra.org.uk] and OSEK/VDX for RTOS,
comrhunication and network management. (Refer to website http://www.osek-vdx.org and also to a book
Progtamming in the OSEK/VDX Environment by Joseph Lemieux from CMP Books, Oct. 2001.)

OSEK is an acronym for Offene Systeme und deren Schaittstellen fiir die Elektronik in Kraftfahrzeugen
(eng.| “Open Systems and their interfaces for the Electronics in Motor vehicles”). A German automotive
y consortium (BMW, Robert Bosch GmbH, DaimlerChrysler, Opel, Siemens and Volkswagen Group)

One is for real-time execution of ECUs (electronic control units) software and base for the other
OSEK/VDX modules using MODISTARC (methods and tools for the validation of OSEK/VDX-based
distributed architectures and for conformance testing of the OSEK/VDX implementations.

Second is for communications stack for data exchange within and between control units.

Third is for network management protocol for automotive embedded systems configuration
determination and monitoring.

PIs. OSEK provides for APIs porting. There is easy transfer of application functions from one hardware
ECU |platform to another with only minor modifications.

OSEK specifies that extendibility and portability should be independent of the source of APIs and co-existence
of software from different sources must be possible. It shall be remarked that OSEKVDX does not prescribe the
implegmentation of OSEKVDX modules, that is, different ECUs may have the same OSEKVDX interfaces, but
differpnt implementations, depending on the hardware architecture and the performance required.

OSEK defines three standards.

1} OSEK-OS for OS, which has greater reliability. It is because, in an OS based upon OSEK, the previous

ten points are taken care of.

OSEK-NM architecture for network management. As in OS, tasks are divided into four types, and the

NM divides the architecture into two types. (i) Direct transfer and interchange of network messages;

(i1) indirect transfer and interchange, both between the nodes.

OSEK-COM architecture for IPCs between the same CPU control unit tasks and between the different

CPU control unit tasks. Between different unit tasks, the data link and physical layers exists. Different

CPU physical layers connect by CAN bus architecture.

OSEK OS standard provisions for greater reliability compared with VxWorks or MUCOS. The MUCOS

s OSEK/VDX extension and provides the programmer the user a certified OSEK/VDX application
ming interface. Reliability is introduced by the interface because the extension supports the

496 - Embedded Sysﬁ*ms

internal communication. Extension does not permit creation and deletion of tasks during run. Extension dé
each task of different priority and activates it only once in the codes. Extension does not use message queue;
uses semaphores as event flag only with no task having run-time deletion or creation of these.

OSEK/VDX Protocols
(Three standards: MODISTARC, Communication stack and Network Management)

K 2 3 4 IE

e Classes BCC1, ECCH1, Specification Standardized Efficient design of
BCCC2, ECC2. of abstract interfacing architecture: The
o COM conformance classes intg,rfaces features for functionalities
CCCA and CCCB internal which are as control units shall be
communication application- with different configurable and
e No creation and deletion of independent architectural scalable, to
tasks during run as possible designs enable optimal
o Task Priority defined and task ::ié;istgeur:teotgt?:e
activates only once in the codes Specification of a user application in
* No message queues, and interface independent of question
 Semaphores as flag only hardware and network

Specification does not prescribe implementation aspects and thus provision of absolute 6
independence with regards to individual implementation and Support of the portability and
reusability of application software

Enhance the performance of overall system without requiring additional hardware due to 7
sequenced utilization of the intelligence (existing resources) distributed in the vehicle

Verification of functionality and implementation of prototypes in selected pilot projects

Fig. 10.2 OSEK basic features

i
i
i
i
i

fines
s and

" 10.3" LINUX 2.6.x AND RTLINUX

Linux is increasingly used in embedded systems and real-time enhancements of that have been introduced as |

2.6.x, the enhancements provide preemptive scheduling, high resolution timers and preemptive interruptpjrvice

(handler) threads. Linux latest version is Linux 2.6.24, released in January 2008. Reasons for the OS po!
are that it is a freeware, has device driver features, has expandability of the kernel codes at run time an|
provision of registering and deregistering device-driver modules. The modules are scheduled like the procf
Sections 10.3.1 and 10.3.2 describe the open-source real-time Linux and RTLinux (a real-time Linux) (both
source and profession).

10.3.1 Real Time Linux Functions

The OS named Linux is after Linus Torvalds, father of the Linux OS. Embedded Linux systems combir

Linux

arity
(has
PSSES.
open

e the

Linux kernel with a small set of free software utilities. The glibc is often replaced as the C standard library by

less resource-consuming alternatives such as dietlibc, uClibc or Newlib.

Embedded Linux application program (tasks) makes the system calls or message passing (Section 8.1.
the functions at a kernel for. 1. Process management, 2. Memory management (e.g., allocation, de-alloc]
pointers, creating and deleting the tasks), 3. File system, 4. Shared memory, 5. Networking system fund

P) for
htion,
fions,

